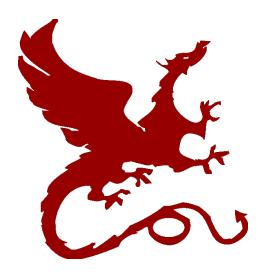
Algorithms for NLP



Language Modeling III

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

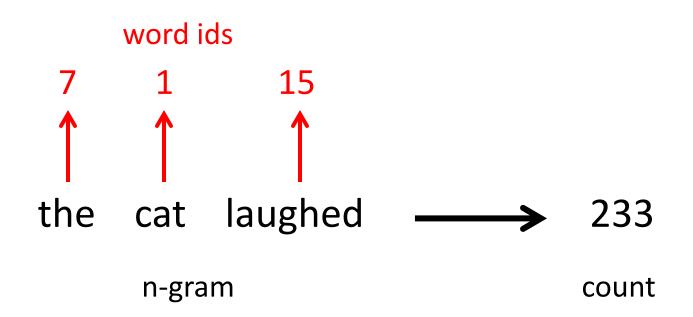
Announcements

- Office hours on website
 - but no OH for Taylor until next week.

Efficient Hashing

- Closed address hashing
 - Resolve collisions with chains
 - Easier to understand but bigger
- Open address hashing
 - Resolve collisions with probe sequences
 - Smaller but easy to mess up
- Direct-address hashing
 - No collision resolution
 - Just eject previous entries
 - Not suitable for core LM storage

Integer Encodings



Bit Packing

Got 3 numbers under 2²⁰ to store?

```
7 1 15
0...00111 0...00001 0...01111
20 bits 20 bits 20 bits
```

Fits in a primitive 64-bit long

Integer Encodings

n-gram encoding

Rank Values

$$c(the) = 23135851162 < 2^{35}$$

35 bits to represent integers between 0 and 2³⁵

Rank Values

unique counts = $770000 < 2^{20}$

20 bits to represent ranks of all counts

rank	freq	
0	1	
1	2	
2	51	
3	233	

So Far

Word indexer

word id

cat	0
the	1
was	2
ran	3

Rank lookup

rank freq

0	1
1	2
2	51
3	233

N-gram encoding scheme

unigram: f(id) = id

bigram: $f(id_1, id_2) = ?$

trigram: $f(id_1, id_2, id_3) = ?$

Count DB

unigram bigram trigram

16078820	0381
15176595	0051
15176583	0076
_	_
16576628	0021
	—
15176600	0018
16089320	0171
15176583	0039
14980420	0030
	—
15020330	0482

16078820	0381
15176595	0051
15176583	0076
_	_
16576628	0021
	—
15176600	0018
16089320	0171
15176583	0039
14980420	0030
_	
15020330	0482

16078820	0381
15176595	0051
15176583	0076
_	_
16576628	0021
15176600	0018
16089320	0171
15176583	0039
14980420	0030
	_
15020330	0482

Hashing vs Sorting

Sorting

c val

15176583	0076
15176595	0051
15176600	0018
16078820	0381
16089320	0171
16576628	0021
16980420	0030
17020330	0482
17176583	0039

query: |5|76595

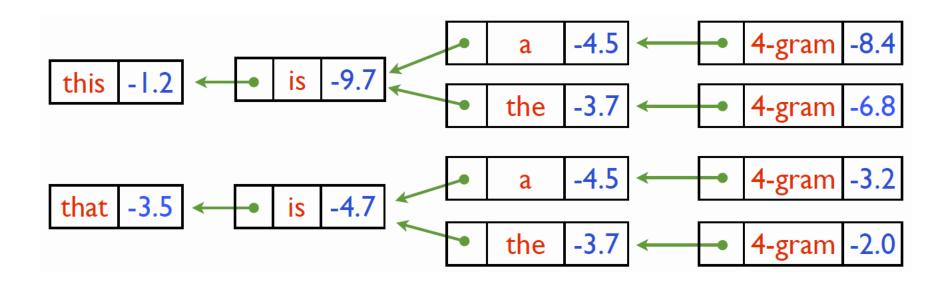
Hashing

c val

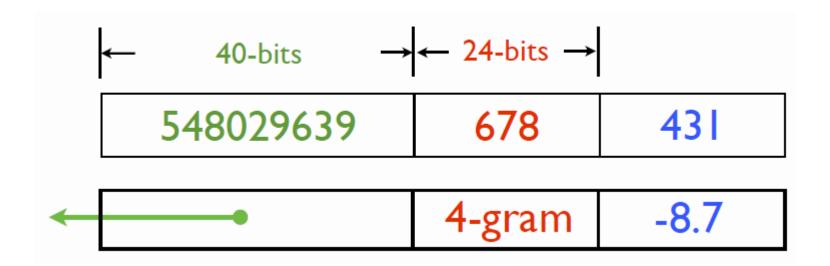
16078820	0381
15176595	0051
15176583	0076
16576628	0021
15176600	0018
16089320	0171
15176583	0039
14980420	0030
_	
15020330	0482

Context Tries

Tries



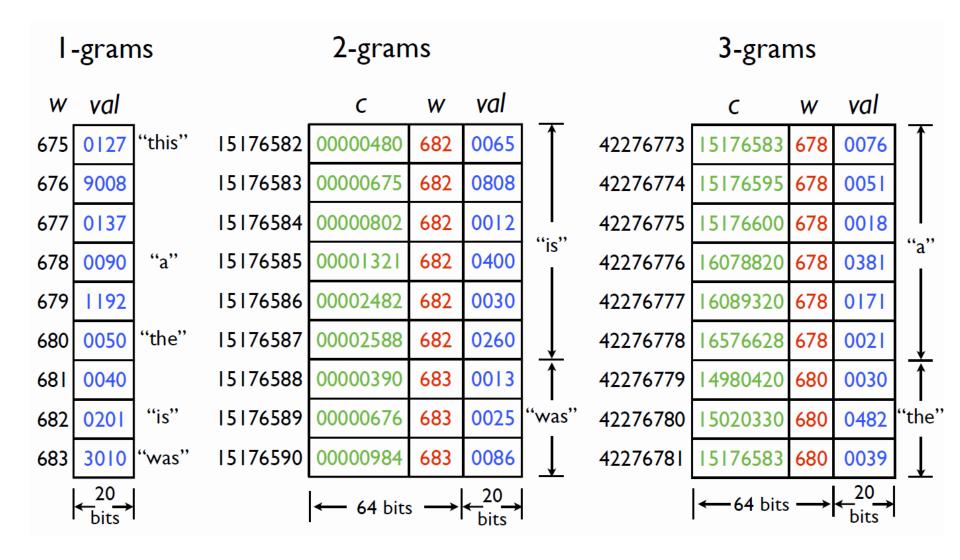
Context Encodings



Google N-grams

- 10.5 bytes/n-gram
- 37 GB total

Context Encodings



Compression

Idea: Differential Compression

С	W	val
15176585	678	3
15176587	678	2
15176593	678	- 1
15176613	678	8
15179801	678	- 1
15176585	680	298
15176589	680	- 1

Δc	Δw	val
15176583	678	3
+2	+0	2
+6	+0	- 1
+40	+0	8
+188	+0	- 1
15176585	+2	298
+4	+0	I

$ \Delta w $	$ \Delta c $	val
40	24	3
3	2	3
3	2	3
9	2	6
12	2	3
36	4	15
6	2	3

Variable Length Encodings

Encoding "9"

000, 1001

Length in Unary

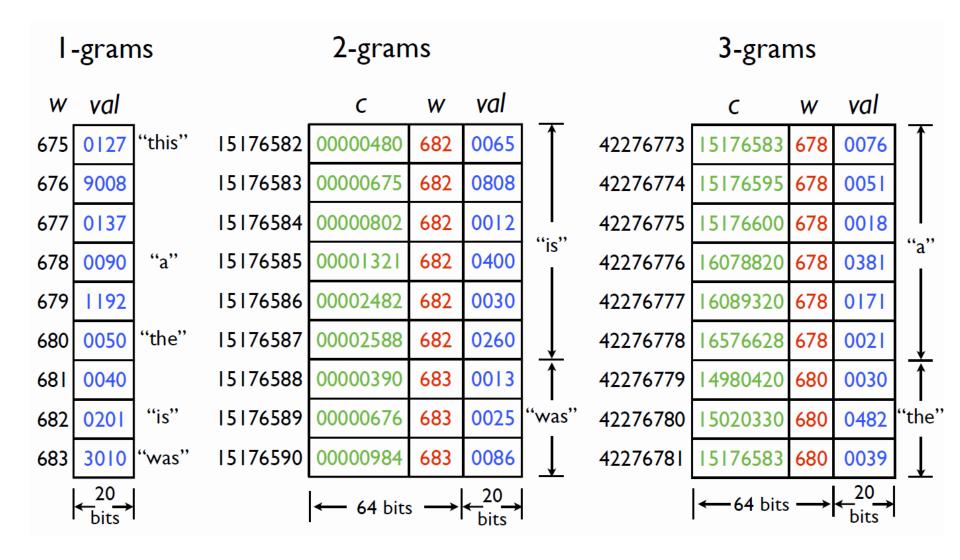
Number in Binary

Google N-grams

- 2.9 bytes/n-gram
- 10 GB total

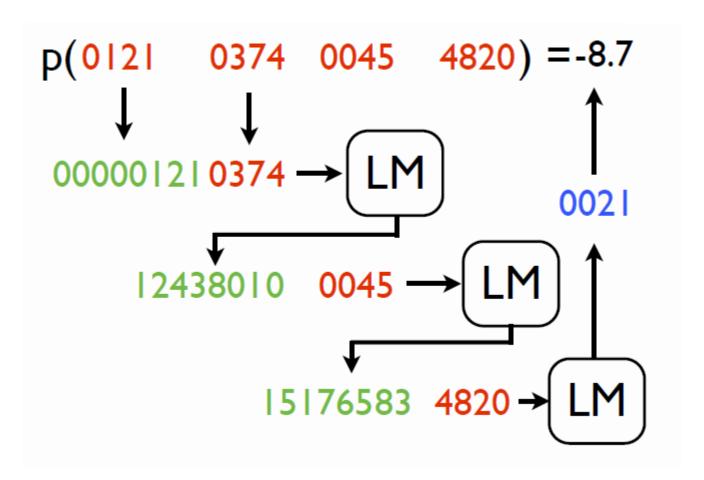
Speed-Ups

Context Encodings

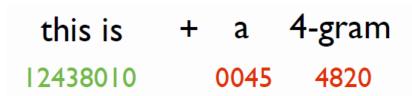


Naïve N-Gram Lookup

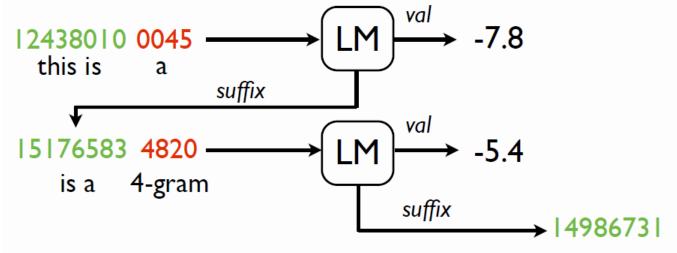
this is a 4-gram



Rolling Queries



С	W	val	suffix
15176583	682	0065	00000480
15176595	682	0808	00000675
15176600	682	0012	00000802
16078820	682	0400	00001321



Idea: Fast Caching

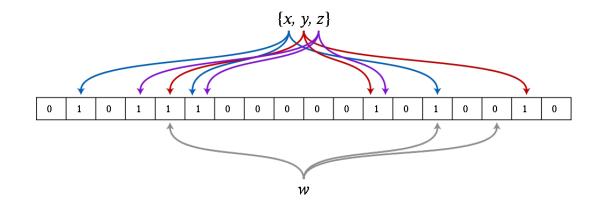
	n-gram	probability
0	124 80 42 1243	-7.034
1	37 2435 243 21	-2.394
2	804 42 4298 43	-8.008

```
hash( 124 80 42 1243 ) =0
```

LM can be more than 10x faster w/ direct-address caching

Approximate LMs

- Simplest option: hash-and-hope
 - Array of size K ~ N
 - (optional) store hash of keys
 - Store values in direct-address
 - Collisions: store the max
 - What kind of errors can there be?
- More complex options, like bloom filters (originally for membership, but see Talbot and Osborne 07), perfect hashing, etc



Maximum Entropy Models

Improving on N-Grams?

N-grams don't combine multiple sources of evidence well

P(construction | After the demolition was completed, the)

- Here:
 - "the" gives syntactic constraint
 - "demolition" gives semantic constraint
 - Unlikely the interaction between these two has been densely observed in this specific n-gram
- We'd like a model that can be more statistically efficient

Some Definitions

INPUTS

$$\mathbf{x}_i$$

close the

CANDIDATE SET

$$\mathcal{Y}(\mathbf{x})$$

{door, table, ...}

CANDIDATES

table

TRUE OUTPUTS

$$\mathbf{y}_i^*$$

door

FEATURE VECTORS

$$f(x,y)$$
 [0 0 1 0 0 0 1 0 0 0 0 0]

**Close" in x \(y = "door" \)

**Close" in x \(y = "door" \)

"close" in $x \land y$ ="door"

y occurs in x x_{-1} ="the" \wedge y="table"

More Features, Less Interaction

$$x = closing the ____, y = doors$$

■ N-Grams
$$x_{-1}$$
="the" \wedge y="doors"

• Skips
$$x_{-2}$$
="closing" \land y="doors"

■ Lemmas
$$x_{-2}$$
="close" \wedge y="door"

Caching y occurs in x

Data: Feature Impact

Features	Train Perplexity	Test Perplexity
3 gram indicators	241	350
1-3 grams	126	172
1-3 grams + skips	101	164

Exponential Form

Weights w

Features f(x, y)

- Linear score $\mathbf{w}^{\top}\mathbf{f}(\mathbf{x},\mathbf{y})$
- Unnormalized probability

$$P(y|x, w) \propto exp(w^{T}f(x, y))$$

Probability

$$P(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \frac{\exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}))}{\sum_{\mathbf{y}'} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}'))}$$

Likelihood Objective

Model form:

$$P(y|x, w) = \frac{\exp(w^{\top} f(x, y))}{\sum_{y'} \exp(w^{\top} f(x, y'))}$$

Log-likelihood of training data

$$L(w) = \log \prod_{i} P(y_{i}^{*}|x_{i}, w) = \sum_{i} \log \left(\frac{\exp(w^{\top} f(x_{i}, y_{i}^{*}))}{\sum_{y'} \exp(w^{\top} f(x_{i}, y'))} \right)$$
$$= \sum_{i} \left(w^{\top} f(x_{i}, y_{i}^{*}) - \log \sum_{y'} \exp(w^{\top} f(x_{i}, y')) \right)$$

Training

History of Training

1990's: Specialized methods (e.g. iterative scaling)

 2000's: General-purpose methods (e.g. conjugate gradient)

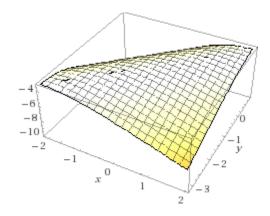
 2010's: Online methods (e.g. stochastic gradient)

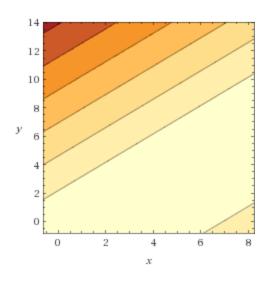
What Does LL Look Like?

Example

- Data: xxxy
- Two outcomes, x and y
- One indicator for each
- Likelihood

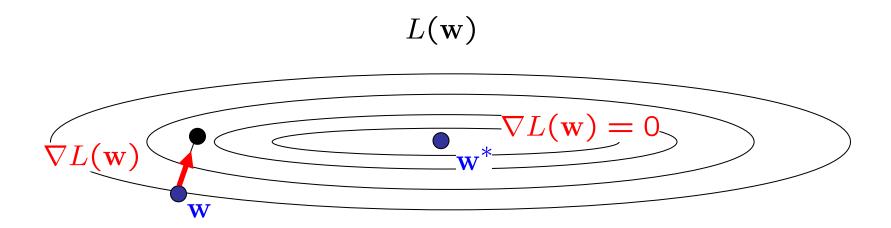
$$\log \left(\left(\frac{e^x}{e^x + e^y} \right)^3 \times \frac{e^y}{e^x + e^y} \right)$$





Convex Optimization

The maxent objective is an unconstrained convex problem



One optimal value*, gradients point the way

Gradients

$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y})) \right)$$

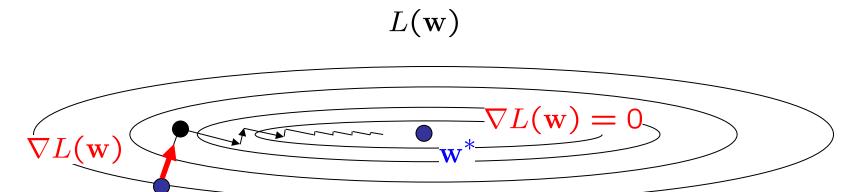
$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i} \left(\mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_{i}) \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}) \right)$$

Count of features under target labels

Expected count of features under model predicted label distribution

Gradient Ascent

The maxent objective is an unconstrained optimization problem



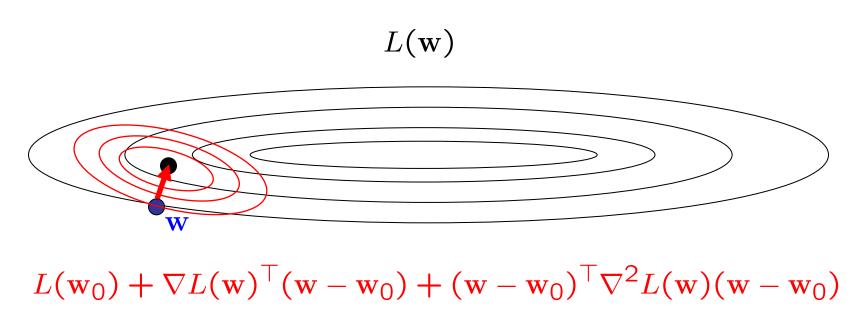
Gradient Ascent

W

- Basic idea: move uphill from current guess
- Gradient ascent / descent follows the gradient incrementally
- At local optimum, derivative vector is zero
- Will converge if step sizes are small enough, but not efficient
- All we need is to be able to evaluate the function and its derivative

(Quasi)-Newton Methods

 2nd-Order methods: repeatedly create a quadratic approximation and solve it

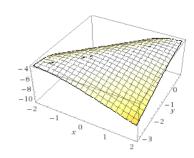


E.g. LBFGS, which tracks derivative to approximate (inverse)
 Hessian

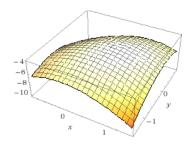
Regularization

Regularization Methods

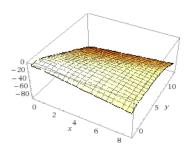
Early stopping

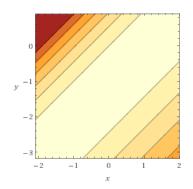


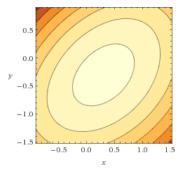
■ L2: L(w)-|w|₂²

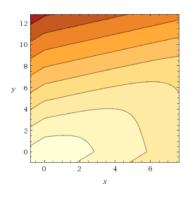


■ L1: L(w)-|w|









Regularization Effects

Early stopping: don't do this

L2: weights stay small but non-zero

- L1: many weights driven to zero
 - Good for sparsity
 - Usually bad for accuracy for NLP

Scaling

Why is Scaling Hard?

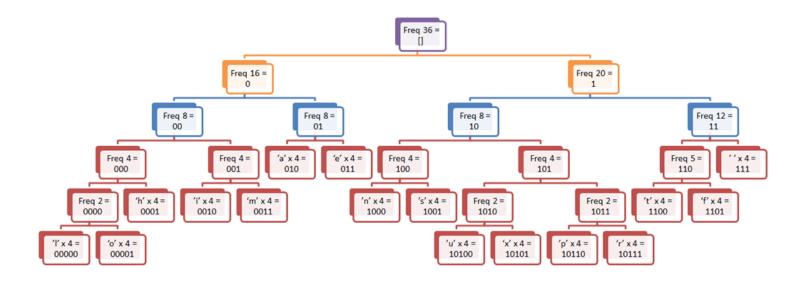
$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y})) \right)$$

Big normalization terms

Lots of data points

Hierarchical Prediction

Hierarchical prediction / softmax [Mikolov et al 2013]



- Noise-Contrastive Estimation [Mnih, 2013]
- Self-Normalization [Devlin, 2014]

Image: ayende.com

Stochastic Gradient

View the gradient as an average over data points

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \sum_{i} \left(\mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_{i}) \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}) \right)$$

Stochastic gradient: take a step each example (or mini-batch)

$$rac{\partial L(\mathbf{w})}{\partial \mathbf{w}} pprox rac{1}{1} \left(\mathbf{f}(\mathbf{x}_i, \mathbf{y}_i^*) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_i) \mathbf{f}(\mathbf{x}_i, \mathbf{y})
ight)$$

Substantial improvements exist, e.g. AdaGrad (Duchi, 11)

Other Methods

Neural Net LMs

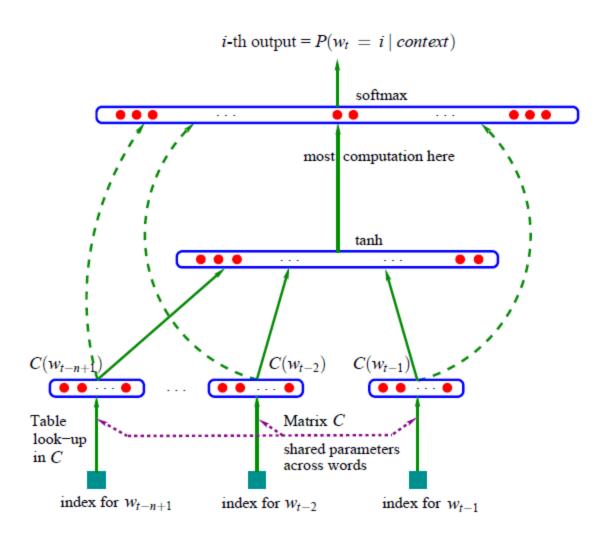


Image: (Bengio et al, 03)

Neural vs Maxent

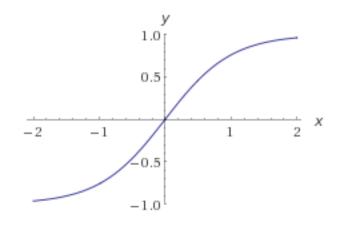
Maxent LM

$$P(y|x, w) \propto exp(w^{T}f(x, y))$$

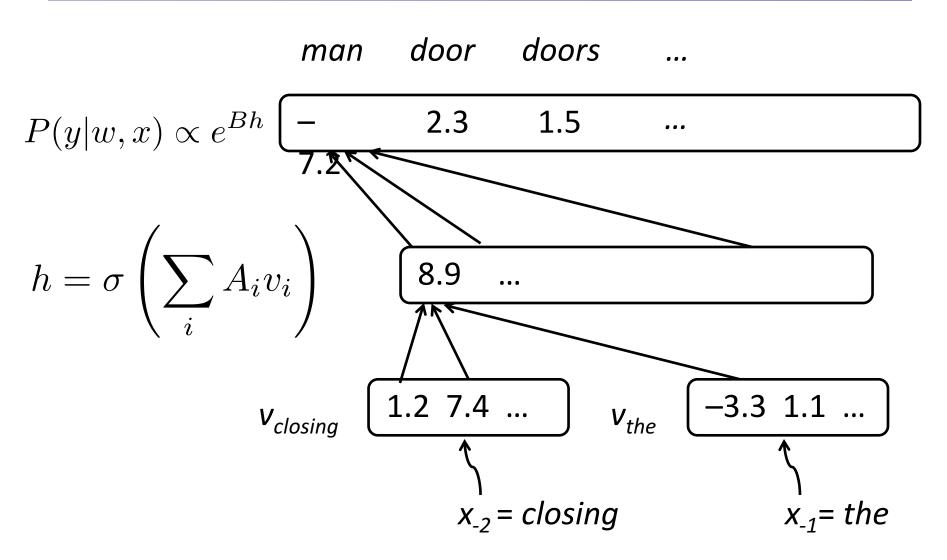
Neural Net LM

$$P(y|x, w) \propto \exp(B\sigma(Af(x)))$$

 σ nonlinear, e.g. tanh



Neural Net LMs

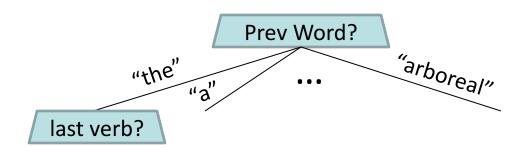


Mixed Interpolation

- But can't we just interpolate:
 - P(w|most recent words)
 - P(w|skip contexts)
 - P(w|caching)
 - **-** ...

- Yes, and people do (well, did)
 - But additive combination tends to flatten distributions, not zero out candidates

Decision Trees / Forests



Decision trees?

- Good for non-linear decision problems
- Random forests can improve further [Xu and Jelinek, 2004]
- Paths to leaves basically learn conjunctions
- General contrast between DTs and linear models

- **L2(0.01) 17 / 355**
- **L2(0.1) 27 / 172**
- L2(0.5) 60 / 156
- **12(10) 296 / 265**

Maximum Entropy LMs

Want a model over completions y given a context x:

$$P(y|x) = P(\text{ close the door } | \text{ close the })$$

- Want to characterize the important aspects of y = (v,x) using a feature function f
- F might include
 - Indicator of v (unigram)
 - Indicator of v, previous word (bigram)
 - Indicator whether v occurs in x (cache)
 - Indicator of v and each non-adjacent previous word
 - **-** ...