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Announcements

§ Office	hours	on	website	
§ but	no	OH	for	Taylor	until	next	week.



Efficient	Hashing
§ Closed	address	hashing

§ Resolve	collisions	with	chains
§ Easier	to	understand	but	bigger

§ Open	address	hashing
§ Resolve	collisions	with	probe	sequences
§ Smaller	but	easy	to	mess	up

§ Direct-address	hashing
§ No	collision	resolution
§ Just	eject	previous	entries
§ Not	suitable	for	core	LM	storage	



Integer	Encodings

the				cat				laughed 233

n-gram count

7 1 15
word	ids



Bit	Packing

20	bits					20	bits				20	bits

Got	3	numbers	under	220 to	store?

Fits	in	a	primitive	64-bit	long

7 1 15
0…00111 0...00001 0...01111



Integer	Encodings

the				cat				laughed 233

n-gram count

15176595 =	

n-gram	encoding



Rank	Values

c(the)	=	23135851162	<	235

35	bits	to	represent	integers	between	0	and	235

15176595 233
n-gram	encoding count

60	bits 35	bits



Rank	Values

#	unique	counts	=	770000	<	220

20	bits	to	represent	ranks	of	all	counts

15176595 3
n-gram	encoding rank

60	bits 20	bits 0 1

1 2

2 51

3 233

rank freq



So	Far

trigrambigramunigram

Word	indexer

Rank	lookup

Count	DB

N-gram	encoding	scheme

unigram:			f(id)	=	id
bigram:					f(id1,	id2)	=	?
trigram:				f(id1,	id2,	id3)	=	?



Hashing	vs	Sorting



Context	Tries



Tries



Context	Encodings

[Many	details	from	Pauls and	Klein,	2011]



Context	Encodings



Compression



Idea:	Differential Compression



Variable	Length	Encodings

000  1001

Encoding	“9”

Length	
in	

Unary

Number	
in

Binary

[Elias, 75]

2.9
10



Speed-Ups



Context	Encodings



Naïve	N-Gram	Lookup



Rolling Queries



Idea:	Fast	Caching

LM	can	be	more	than	
10x	faster	w/	direct-
address	caching



Approximate	LMs
§ Simplest	option:	hash-and-hope

§ Array	of	size	K	~	N
§ (optional)	store	hash	of	keys
§ Store	values	in	direct-address
§ Collisions:	store	the	max
§ What	kind	of	errors	can	there	be?

§ More	complex	options,	like	bloom	filters	(originally	for	membership,	but	
see	Talbot	and	Osborne	07),	perfect	hashing,	etc



Maximum	Entropy	Models



Improving	on	N-Grams?
§ N-grams	don’t	combine	multiple	sources	of	evidence	well

§ Here:
§ “the”	gives	syntactic	constraint
§ “demolition”	gives	semantic	constraint
§ Unlikely	the	interaction	between	these	two	has	been	densely	

observed	in	this	specific	n-gram

§ We’d	like	a	model	that	can	be	more	statistically	efficient

P(construction	|	After	the	demolition	was	completed,	the)



Some	Definitions

INPUTS

CANDIDATES

FEATURE 
VECTORS

close	the	____

CANDIDATE 
SET

y	occurs	in	x

“close”	in	x Ù y=“door”
x-1=“the”	Ù y=“door”

TRUE 
OUTPUTS

{door,	table,	…}

table

door

x-1=“the”	Ù y=“table”



More	Features,	Less	Interaction

§ N-Grams

§ Skips

§ Lemmas

§ Caching

x	=	closing	the	____,	y	=	doors

x-1=“the”	Ù y=“doors”

x-2=“closing”	Ù y=“doors”

x-2=“close”	Ù y=“door”

y	occurs	in	x



Data: Feature	Impact

Features Train	Perplexity Test	Perplexity

3 gram indicators 241 350

1-3	grams 126 172

1-3	grams	+	skips 101 164



Exponential Form
§ Weights Features

§ Linear	score

§ Unnormalized probability

§ Probability



Likelihood	Objective
§ Model	form:

§ Log-likelihood	of	training	data
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Training



History	of	Training

§ 1990’s:	Specialized	methods	(e.g.	iterative	
scaling)

§ 2000’s:	General-purpose	methods	(e.g.	
conjugate	gradient)

§ 2010’s:	Online	methods	(e.g.	stochastic	
gradient)



What	Does	LL	Look	Like?
§ Example

§ Data:	xxxy
§ Two	outcomes,	x	and	y
§ One	indicator	for	each
§ Likelihood



Convex	Optimization
§ The	maxent objective	is	an	unconstrained	convex	problem

§ One	optimal	value*,	gradients	point	the	way



Gradients

Count	of	features	under	
target	labels

Expected	count	of	features	
under	model	predicted	label	
distribution



Gradient	Ascent
§ The	maxent objective	is	an	unconstrained	optimization	

problem

§ Gradient	Ascent
§ Basic	idea:	move	uphill	from	current	guess
§ Gradient	ascent	/	descent	follows	the	gradient	incrementally
§ At	local	optimum,	derivative	vector	is	zero
§ Will	converge	if	step	sizes	are	small	enough,	but	not	efficient
§ All	we	need	is	to	be	able	to	evaluate	the	function	and	its	derivative



(Quasi)-Newton Methods
§ 2nd-Order	methods:	repeatedly	create	a	quadratic	

approximation	and	solve	it

§ E.g.	LBFGS,	which	tracks	derivative	to	approximate	(inverse)	
Hessian



Regularization



Regularization Methods

§ Early	stopping

§ L2:	L(w)-|w|22

§ L1:	L(w)-|w|



Regularization	Effects

§ Early	stopping:	don’t	do	this

§ L2:	weights	stay	small	but	non-zero

§ L1:	many	weights	driven	to	zero
§ Good	for	sparsity
§ Usually	bad	for	accuracy	for	NLP



Scaling



Why	is Scaling	Hard?

§ Big	normalization	terms

§ Lots	of	data	points



Hierarchical	Prediction
§ Hierarchical	prediction /	softmax [Mikolov et	al	2013]

§ Noise-Contrastive	Estimation	[Mnih,	2013]

§ Self-Normalization	[Devlin,	2014]

Image:	ayende.com



Stochastic	Gradient
§ View	the	gradient	as	an	average	over	data	points

§ Stochastic	gradient:	take	a	step	each	example	(or	mini-batch)

§ Substantial	improvements	exist,	e.g.	AdaGrad (Duchi,	11)



Other Methods



Neural Net	LMs

Image:	(Bengio et	al,	03)



Neural vs	Maxent
§ Maxent LM

§ Neural	Net	LM

exp (B� (Af(x)))

� nonlinear,	e.g.	tanh



Neural Net	LMs

x-1= thex-2	= closing
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Mixed Interpolation
§ But	can’t	we	just	interpolate:

§ P(w|most recent	words)
§ P(w|skip contexts)
§ P(w|caching)
§ …

§ Yes,	and	people	do	(well,	did)
§ But	additive	combination	tends	to	flatten	
distributions,	not	zero	out	candidates



Decision Trees	/	Forests

§ Decision	trees?
§ Good	for	non-linear	decision	problems
§ Random	forests	can	improve	further	[Xu	and	Jelinek,	2004]
§ Paths	to	leaves	basically	learn	conjunctions
§ General	contrast	between	DTs	and	linear	models

Prev Word?

…
last	verb?





§ L2(0.01)	17	/	355
§ L2(0.1)	27	/	172
§ L2(0.5)	60	/	156
§ l2(10)	296	/	265



Maximum	Entropy	LMs

§ Want	a	model	over	completions	y	given	a	context	x:

§ Want	to	characterize	the	important	aspects	of	y	=	
(v,x)	using	a	feature	function	f

§ F	might	include
§ Indicator	of	v	(unigram)
§ Indicator	of	v,	previous	word	(bigram)
§ Indicator	whether	v	occurs	in	x	(cache)
§ Indicator	of	v	and	each	non-adjacent	previous	word
§ …

𝑃 𝑦 𝑥 = 𝑃(																																					)close	the	door	|	close	the


